BZ953T

Two independent safety relays with fixed turn-off delay in one housing

* For reference only. Mating connector not included in scope of delivery.
Application / Function 2
Device Variants 2
Technical Data 3
Standards and Norms 4
Mechanical Data 5
Block Schematic 6
Measures / Mounting Diagram6
Changes to this document 7

Application / Function

Two completely independent relay modules K1 and K2, each with a forcefully guided type A safety relay after EN 61810-3: 2015 with protective measures and turn-off delay, in a single enclosure. Each module has its own timer and is equipped with one normally open and one normally closed contact. The turn-off delay with a fixed delay time is set up without programmable components and starts automatically when the supply voltage is removed. Two LEDs on the front of the enclosure show the current status of each relay.

Device Variants

The device is available for DC supply voltages from 24 V to 110 V as defined in EN 50155: 2017 section 5.1 and with turn-off delays of max. 2 s . The device designation corresponds to the nominal operating voltage and the duration of the delay. Article numbers only exist for versions that have already been produced. If you wish to order a device with a different delay or operating voltage, the new version will be assigned a new article number. Please contact us directly in this case.

Device designation: BZ953T-XXXV-Y.Ys

XXX = nominal supply voltage in volts Y. $Y=$ turn-off delay in seconds

Example: The article with the designation BZ953T-36V-2.0s (article number 216) describes a device in which the two relay modules are identical. Each module is nominally set to a turn-off delay of 2.0 seconds and is designed for a supply voltage of 36 V DC.

Tolerance: For all device variants with nominal delays in the range of up to 2 seconds, the tolerance lies within $\pm 10 \%$ or $\pm 100 \mathrm{~ms}$ (the greater of the two values applies) over the entire voltage and temperature range.

Different modules: Devices in which the two modules K1 and K2 are designed differently can be ordered. This is possible for both supply voltage and delay. The device designation then contains two voltages and / or two delays.

Example: The order number BZ953T-24V-2.0s-36V-1.5s describes a device in which the first relay module K1 is designed for a supply voltage of 24 V and in which the turn-off delay lasts 2.0 s . The second relay module K 2 is designed for a supply voltage of 36 V and the turn-off delay lasts 1.5 s .

Turn-off delay / s	Supply voltage / V	Holding current per module $/ \mathrm{mA}$	Device designation	Art. No.
2.0	36	≤ 35	BZ953T-36V-2.0s	216
2.0	110	≤ 15	BZ953T-110V-2.0s	325
1.9	110	≤ 15	BZ953T-110V-1.9s	302

Table 1: Existing order options for BZ953T with nominal supply voltage, turn-off delay and article number.

B+ Z Elektronik AG	Created: Changed:	$\begin{aligned} & 18.11 .2021 \\ & 11.09 .2023 \end{aligned}$ page: 2/7	BZ953T Two independent safety relays with fixed turn-off delay in one housing

We reserve all rights to this document and the subject matter set forth therein. Reproduction, disclosure to third parties or other use of this document is prohibited without our express consent. © B+Z Elektronik AG

Technical Data

Environment

General

Height above sea level Operational temperature Temperature rise on power on
Fast temperature changes
Vibration and shock
Dirt and condensation

AX (max. 2000m)
(EN 50125-1:2014 Tab. 1)
OT3 $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
ST1
H1
Kat. 1, Class B
PD2 (light / non-conducting)
(EN 50155:2017 Tab. 1)
(EN 50155:2017 Tab. 2)
(EN 50155:2017 Tab. 3)
(EN 61373:2010)
(EN 50124-1:2017 Tab. A.4)

Electrical

Nominal supply voltage(s) / V
Permissible permanent deviation
Permissible short-term deviation (< 1s) Interruption class
Electromagnetic compatibility
(see device variant table)
-30% bis $+25 \%$
-40\% bis +40\%
S3 (20 ms)
EN 50121-3-2:2016

Turn-on Behavior and Minimum Turn-on Duration

Figure 1: Typical inrush current at nominal voltage
Without previous operation, the inrush current of a module is max. 500 mA for a duration of max. 500 ms , depending on the device variant (see Figure 1). The full holding power is reached after 1 second irrespective of the variant. Falling below the minimum turn-on time of 1 second can lead to a reduction in the turn-off delay and must therefore be prevented. The response time of the relay contacts after connecting the supply voltage is typically 10 ms .

Fault Diagnosis

When used in circuits with safety requirements, the turn-off behavior of the device should be checked regularly (e.g. as part of the normal turn-off process of the vehicle). If the turn-off time significantly exceeds or falls below the specified tolerance of $\pm 10 \%$ or $\pm 100 \mathrm{~ms}$ (the greater of the two values applies), the device should be replaced.

B+Z\|	Created: 18.11 .2021 Changed: 11.09 .2023 page: $3 / 7$	BZ953T Two independent safety relays with fixed turn-off delay in one housing
We reserve all rights to this document and the subject matter set forth therein. Reproduction, disclosure to third parties or other use of this document is prohibited without our express consent. © B+Z Elektronik AG		

Relay Contacts

Contact material	AgCuNi $+0,2-0,4 \mu \mathrm{~m} \mathrm{Au}$
Contact type	Single contact with serrated crown
Rated switching capacity	320 VA 160 VAC 2 A AC 1
Max. switch-on current	10 A for 20 ms
Switching voltage range	5 to 160 V DC/AC
Typical switching current range	3 mA to 6 mA
Max. permanent contact load	2 A
Contact resistance (unused)	$<100 \mathrm{~m} \Omega$
Mechanical service life	$>10 \times 10^{6}$ switching cycles
Normally open contact bouncing period	typically 2 ms
Normally closed contact bouncing period	typically 15 ms
Shock resistance 16 ms	NO contact 17 g
	NC contact 7 g
Vibration resistance	NO contact 7 g
$10-200 \mathrm{~Hz}$	NC contact 2 g

Insulation between any two contacts as well as between any contact and any coil is designed according to the requirements of reinforced insulation as defined by EN 50124-1:2017 for nominal voltages of up to 110VDC.

Maximal switching characteristics (EN60947-5-1)
AC 1: $\quad 250 \mathrm{~V} / 6 \mathrm{~A}$
AC 15: $\quad 230 \mathrm{~V} / 3 \mathrm{~A}$
DC 1: $\quad 24 \mathrm{~V} / 6 \mathrm{~A}$
DC 13: $\quad 24 \mathrm{~V} / 5 \mathrm{~A} / 0,1 \mathrm{~Hz}$
UL 508: B300 / R300

Standards and Norms

The device is manufactured according to the following standards:
ISO 9001:2015
Electronic equipment used on rolling stock: EN 50155:2017
Fire protection: EN 45545-2:2020
The standards applicable to this product are dependent on the version available at the time of development.

$\mathbf{B + Z}$	Created: 18.11 .2021 Changed: 11.09 .2023	BZ953T B Elektronik AG Switzerland
	page: $4 / 7$	Two independent safety relays with fixed turn-off
delay in one housing		

We reserve all rights to this document and the subject matter set forth therein. Reproduction, disclosure to third parties or other use of this document is prohibited without our express consent. © B+Z Elektronik AG

Mechanical Data

Dimensions

Size over all:
Weight:
$95 \times 23 \times 87 \mathrm{~mm}(\mathrm{LxW} \times \mathrm{H})$
ca. 95 g (without mating connector)

Materials

Enclosure: Glass-fibre reinforced plastic
Cover:
Plastic
PCB:
FR-4

Mounting

Arbitrary orientation
Mounting:
on standard 35 mm T-rails, EN-50022-35

Front edge connector

12-pin plug connector:
WAGO

Mating connector (optional)

12-pin female connector: WAGO 734-112/037-047/034-000
Female connector with strain relief

$\mathbf{B + Z}$	Created: 18.11 .2021 Changed: 11.09 .2023	BZ953T B Elektronik $\mathbf{A G}$ Switzerland

Block Schematic

Measures / Mounting Diagram

BZ953T
Two independent safety relays with fixed turn-off delay in one housing

Changes to this document

Date	Paragraph	Change
20.01.2022	Device Variants	Range of available device variants extended to include all voltages between 24V bis 110V. Voltage designator in device designation extended to three characters.
$\mathbf{2 7 . 0 6 . 2 0 2 2}$	Technical Data	Fixed spelling of 'non-condensing'.
$\mathbf{2 7 . 0 6 . 2 0 2 2}$	Device Variants	Added BZ953T-110V-2.0s to variant list. Max. holding current per module added to variant list.
$\mathbf{2 8 . 0 6 . 2 0 2 2}$	Changes to this document	Changed language of column headings to English.
$\mathbf{2 1 . 0 3 . 2 0 2 3}$	Device Variants	Added BZ953T-110V-1.9s to variant list. Added decimal digit to turn-off delay column for all variants. Updated ISO9001 seal
$\mathbf{2 1 . 0 3 . 2 0 2 3}$	Title page	Added figure 1 and more specific information on rush-in current. Refined general and electrical environment information. Added details on insulation.
$\mathbf{1 1 . 0 9 . 2 0 2 3}$	Technical Data	Replaced german image description.

